Drilling is easily the most common machining process. One estimate is that 75% of all metal-cutting material removed comes from drilling operations.


Drilling involves the creation of holes that are right circular cylinders. This is accomplished most typically by using a twist drill, something most readers will have seen before. The figure below illustrates a cross section of a hole being cut by a common twist drill:

The chips must exit through the flutes to the outside of the tool. As can be seen in the figure, the cutting front is embedded within the workpiece, making cooling difficult. The cutting area can be flooded, coolant spray mist can be applied, or coolant can be delivered through the drill bit shaft. For an overview of the chip-formation process, see the Chip Formation Section.

Drilling Characteristics

The characteristics of drilling that set it apart from other powered metal cutting operations are:


  • The chips must exit out of the hole created by the cutting.
  • Chip exit can cause problems when chips are large and/or continuous.
  • The drill can wander upon entrance and for deep holes.
  • For deep holes in large workpieces, coolant may need to be delivered through the drill shaft to the cutting front.
  • Of the powered metal cutting processes, drilling on a drill press is the most likely to be performed by someone who is not a machinist.

Drill Press Work Area



A view of the metal-cutting area of a drill press is shown below. The workpiece is held in place by a C-clamp since cutting forces can be quite large. It is dangerous to hold a workpiece by hand during drilling since cutting forces can unpredictably get quite large and wrench the part away. Wood is often used underneath the part so that the drill bit can overshoot without damaging the table. The table also has holes for drill overshoot as well as weight reduction. A three-jaw chuck is used since three points determine a circle in two dimensions. Four-jaw chucks are rarely seen since offset of the bit is not necessary. The next section contains illustrations of drill bit chucks. To get an idea of the differing configurations of three and four-jaw chucks, please see the equivalent lathe chucks.

Sinotech offers an exceptionally wide range of secondary processes that are applied to metals formed in hot or cold processes. Sinotech’ Supplier Quality Engineers determine the availability of the process within the metal forming facility, as well as the quality. If the internal secondary processes do not meet Sinotech standards then the processes are carried out in Sinotech-audited and qualified off-site secondary processing facilities. Sinotech has audited, qualified and worked with QS-9000 and ISO certified secondary processing facilities in China, Taiwan and Korea for over 12 years. Sinotech is dedicated to managing your project on-site and delivering parts to you at lower prices but the same quality, service and terms as a domestic supplier.

© Copyright 2023. Sinotech, Inc. All rights reserved.